ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Wu-Sheng Shih, R. B. Stephens, W. J. James
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 24-31
Technical Paper | doi.org/10.13182/FST00-A118
Articles are hosted by Taylor and Francis Online.
Composite coatings containing beryllium are prepared by plasma-enhanced chemical vapor deposition at a substrate temperature as low as 250°C in a radio-frequency-induced cylindrical plasma reactor. Diethylberyllium is used as the precursor together with hydrogen as a coreactant gas. These coatings are characterized by Auger electron spectroscopy (AES), X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, electrical resistivity, and thermogravimetric analysis. AES indicates that the composition of the coatings reaches a steady level at a depth of 300 Å from the surface and maintains a constant composition throughout the thickness of the coatings. The characterization studies establish the dominant phase to be Be2C. The coatings are also resistant to oxidation and hydrolysis in dry/moist air unlike bulk Be2C. It is found that the coatings deposited close to the diethylberyllium inlet contain amorphous beryllium that is homogeneously dispersed in a Be2C matrix. Films of ~5-m thickness with an acceptable permeability to H2 are prepared. These coatings meet some of the major requirements of the ablator material for inertial confinement fusion target capsules.