ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Jean Johner
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 308-349
Technical Paper | doi.org/10.13182/FST11-A11650
Articles are hosted by Taylor and Francis Online.
The HELIOS zero-dimensional code (Version 1.0) is described in detail in the case of deuterium-tritium (D-T) plasmas.The part of the code described solves in a self-consistent way the thermal equilibrium equation of a D-T thermonuclear plasma coupled to the conservation equation of the helium ash with a He*/E = const. constraint.Prominent features of the modeling are the following: description of any type of last closed magnetic surface (LCMS) by means of four portions of conics; exact closed form expressions for the poloidal surface, plasma volume, plasma surface, and LCMS length; exact surface and volume integration (for arbitrary aspect ratio) in the approximation of magnetic surfaces similar to the LCMS; parabolic type density profile and two-parameters temperature profile, both with pedestals and finite values at the separatrix; line radiation of light impurities calculated from tabulated radiative power loss functions; scalings for the pedestal temperature, L-H transition, and confinement time; modeling for the divertor thermal load; self-consistent radial build modeling for the plateau duration calculation; and detailed power plant thermal balance.Applications to ITER and DEMO operation and to inductive reactor design are given.