In this paper we present and discuss recent experimental and theoretical advances concerning the redistribution process, the control of target temperature, and the effect of deuterium-tritium (D-T) aging on the optimum laser shot temperature at the Laser Mégajoule (LMJ) facility.

We introduce two analytical models to provide a better understanding of thermal target behavior. On one hand the first model describes the evolution of the D-T layer temperature, which cannot be recorded experimentally. On the other hand the second model highlights the necessity for the optimum laser shot temperature (i.e., 1.5 K below the triple point) to be adapted to the aging of the target.

The analytical considerations are completed with experimental results obtained with D2 taken as a reference system to investigate the properties of D-T in LMJ targets.