ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Brian M. Patterson, Kimberly A. Obrey, George J. Havrilla
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 121-125
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11513
Articles are hosted by Taylor and Francis Online.
Confocal micro X-ray fluorescence (confocal MXRF) is continuing to be explored as a method for characterizing copper and argon doped sputtered beryllium capsules. Previously demonstrated was the utility of confocal MXRF in both the two- and three-dimensional modes and overlaying the data with X-ray micro computed tomography as a method of nondestructive analysis. In this paper, the relative amount of copper dopant was measured as a function of capsule theta, examining the changes in the amounts of copper around the circumference of the capsule and comparing the relative amount of copper between capsules. A theta stage was specially constructed in order to perform line scans through the capsule wall while keeping the geometry of the measurement constant. Four capsules (one unpyrolyzed and three pyrolyzed) were examined with this method. The noise of the measurements averaged 1.43%, and differences within a capsule as a function of theta were 2.15%, with differences between capsules [approximately]13% indicating that the measurement noise was approximately half the overall variation in copper signal and far less than the measured differences between capsules. These differences in the amount of copper within a capsule and between capsules are much greater than that obtained using absorption techniques.