ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. Santos, A. J. Cantos
Fusion Science and Technology | Volume 58 | Number 2 | October 2010 | Pages 706-713
Selected Paper from the Sixth Fusion Data Validation Workshop 2010 (Part 1) | doi.org/10.13182/FST10-A10895
Articles are hosted by Taylor and Francis Online.
In the analysis and classification of signals from massive databases, it is highly desirable to use automatic mechanisms. The synergy of artificial intelligence and advanced signal processing techniques is becoming very efficient in developing this kind of task. In this work we employ a signal processing strategy based on the wavelet transform and then genetic algorithms for classification purposes. An in-depth analysis of the waveforms has been carried out, and an analytical preprocessing has been applied to prepare the signals for their classification. Each individual of the simulated population represents a classifying rule, composed of an antecedent and a consequent. The codification of the knowledge is one of the main contributions of this paper. This genetic classification system has been applied to six different classes of plasma signals of the TJ-II stellarator database at CIEMAT in Spain with satisfactory results.