ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Pei-Jun Cai, Yong-Jian Tang, Lin Zhang, Wei-Dong Wu
Fusion Science and Technology | Volume 49 | Number 1 | January 2006 | Pages 74-78
Technical Paper | doi.org/10.13182/FST06-A1087
Articles are hosted by Taylor and Francis Online.
New-type metallic oxide (M2O3 M = Cr, Al) doped plastic shells used for inertial confinement fusion experiments are fabricated with emulsion techniques. Three different phases of solution (W1, O, and W2) are adopted for the fabrication process. The W1 phase is 1 wt% of sodium lauryl sulfate in water. The W1 phase solution is mixed with a 3 wt% M2O3-PS solution in benzene-dichloroethane (O phase) while stirring. The mixed emulsion (W1/O) is then poured into a 3 wt% aqueous polyvinyl alcohol solution (W2 phase) while stirring. The resulting emulsion (W1/O/W2) is heated to evaporate benzene and dichloroethane, and thus, a solid M2O3-PS shell is formed. The diameter and wall thickness of the shells are 300 and 5 m, respectively. The average surface roughness of the final products is <30 nm. Other parameters, uniformity and sphericity, are 98.9 and 99.6%, similar to or better than that of the usual PS shells.