ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
D. D. Ryutov, Y. C. F. Thio
Fusion Science and Technology | Volume 49 | Number 1 | January 2006 | Pages 39-55
Technical Paper | doi.org/10.13182/FST06-A1084
Articles are hosted by Taylor and Francis Online.
One of the challenging problems of magnetized target fusion (MTF) is developing ways to transport energy to the target situated at a distance far enough from the energy source so as to prevent damage to the permanent parts of the source. Several schemes were considered in the past, including the use of particle beams coupled with the inverse diode, mechanical projectiles in combination with magnetocompressional generators, and the plasma liner. In this paper, a possible modification of the original concept of the plasma liner (by Thio et al.) is described. The modification consists of creating a thin, higher-density shell made of a high-Z plasma and accelerating it onto an MTF target by the thermal pressure of hydrogen plasma with a temperature of ~10 eV. We discuss constraints on the parameters of this system and evaluate the convergence ratio that can be expected.