ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
T. Akiyama, K. Kawahata, K. Tanaka, T. Tokuzawa, Y. Ito, S. Okajima, K. Nakayama, C. A. Michael, L. N. Vyacheslavov, A. Sanin, S. Tsuji-Iio, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 352-363
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-8
Articles are hosted by Taylor and Francis Online.
This paper describes the interferometer systems on the Large Helical Device (LHD). LHD is equipped with five interferometer systems, each of which has a different operational purpose and measurable electron density range. A single-channel millimeter-wave interferometer is mainly used for low-density plasmas along a horizontal line of sight on the equatorial plane. Wavelengths of 1 and 2 mm are used for vibration compensation based on two-color interferometry, which has been used since the first operation of LHD. A 13-channel CH3OH laser interferometer (wavelength of 119 m) covers almost the whole poloidal cross sections of LHD plasmas with a chord separation of 90 mm. It routinely provides temporal behavior and profiles of the electron density. The laser has been developed as a collaboration between the National Institute for Fusion Science (NIFS) and Chubu University. An 80-channel CO2 laser interferometer (10.6 m) is employed for high-density plasmas such as superdense core plasmas. It adopts an imaging technique with three slablike beams and array detectors to measure the density profile precisely. A phase contrast imaging interferometer, which measures density fluctuations, is combined with the CO2 laser interferometer. Since LHD has strong magnetic shear, a distribution of the density fluctuations is evaluated by using shear technique. A conventional millimeter-wave (4 mm) interferometer is also installed at a divertor region to measure dynamic density responses in a divertor leg. The phase counter used on these interferometers was originally developed at NIFS. The phase resolution of a typical phase counter is 1/100 fringe with a temporal response of 10 s.