ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
S. Masuzaki, M. Kobayashi, M. Tokitani, N. Ashikawa, T. Hino, Y. Yamauchi, Y. Nobuta, N. Yoshida, M. Miyamoto, R. Sakamoto, J. Miyazawa, T. Morisaki, N. Ohyabu, H. Yamada, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 321-330
Chapter 7. Plasmas-Wall Interactions | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10818
Articles are hosted by Taylor and Francis Online.
A global particle balance study has been investigated in the Large Helical Device (LHD) in which the first wall and the divertor tiles are made of stainless steel (SUS-316L) and carbon, respectively. The carbon area is less than 10% of the stainless steel area. The analyzed discharges have been conducted under an intrinsic helical divertor (HD) or a local island divertor (LID). The HD is an open divertor at this stage, and the LID is a closed divertor equipped with a baffle structure and a pump system. In the HD configuration, fuel retention up to 75% of injected hydrogen was observed, and the retained hydrogen affected the plasma density control. On the other hand, almost all fueled hydrogen was evacuated by the pumps in the LID configuration. After each experimental campaign, detailed analyses of the in-vessel material probes (SUS-316L stainless steel) and a divertor tile exposed to various plasma discharges during each experimental campaign were conducted. The areal density of the retained hydrogen both in the material probes and the divertor tile was in the range 1021 to 1022 H/m2 , and it corresponded to the averaged areal density that was observed after an experimental day with high-density discharges.