ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
MURR expansion set back by Mo. state legislature
Spirits were high last month when a ribbon cutting was held at the University of Missouri for a $20 million, three-story, 47,000-square-foot addition, dubbed MURR West, to the MURR research reactor facilities.
H. Yamada, K. Kawahata, T. Mutoh, N. Ohyabu, Y. Takeiri, S. Imagawa, K. Ida, T. Mito, Y. Nagayama, T. Shimozuma, K. Y. Watanabe, M. Kobayashi, R. Kumazawa, S. Masuzaki, T. Morisaki, J. Miyazawa, K. Nagaoka, Y. Narushima, S. Sakakibara, R. Sakamoto, K. Toi, M. Yokoyama, O. Kaneko, A. Komori, O. Motojima, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 12-28
Chapter 2. LHD Progress | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10789
Articles are hosted by Taylor and Francis Online.
Progress in the integrated development of the helical system in the Large Helical Device (LHD) is described in this paper. Understanding of net current-free plasmas has been deepened in the extended operational regime. Geometrical optimization based on neoclassical theory has revealed that good confinement, equivalent to the tokamak H-mode, can be obtained in the collisionless regime. This approach has also demonstrated that anomalous transport is reduced simultaneously, which poses a working hypothesis that optimization of neoclassical transport suppresses turbulent anomalous transport as well. With regard to the magnetohydrodynamic instability, LHD has discovered that interchange instability is benign in the magnetic hill. These two findings have produced a synergistic effect on the enhancement of confinement and plasma . Remarkable proof of the advantage of helical systems can be seen in very high density operation, which is not accessible in tokamaks. Abundant integrated knowledge about three-dimensional physics has been extracted from these achievements. This progress is important in the assessment of the potential of a helical fusion reactor and makes a significant complementary contribution to tokamaks as well.