ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
A. Komori, H. Yamada, S. Imagawa, O. Kaneko, K. Kawahata, K. Mutoh, N. Ohyabu, Y. Takeiri, K. Ida, T. Mito, Y. Nagayama, S. Sakakibara, R. Sakamoto, T. Shimozuma, K. Y. Watanabe, O. Motojima for LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 1-11
Chapter 1. Introduction | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST58-1
Articles are hosted by Taylor and Francis Online.
The Large Helical Device (LHD) is a heliotron-type device employing large-scale superconducting magnets to enable advanced studies of net-current-free plasmas. The major goal of the LHD experiment is to demonstrate the high performance of helical plasmas in a reactor-relevant plasma regime. Engineering achievements and operational experience greatly contribute to the technological basis for a fusion energy reactor. Thorough exploration for scientific and systematic understanding of the physics in the LHD is an important step to a helical fusion reactor. In the 12 years since the initial operation, the physics database as well as operational experience has been accumulated, and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantages of helical systems in the LHD. The cryogenic system has been operated for 56 000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of neutral beam injection, 3 MW of ion cyclotron resonance frequency, and 2.5 MW of electron cyclotron resonance heating. Highlighted physical achievements are high beta (5.1%), high density (1.2 × 1021 m-3), and steady-state operation (3200 s with 490 kW).