ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Marco Ariola, Alfredo Pironti, Alfredo Portone
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 263-277
Technical Paper | doi.org/10.13182/FST99-A107
Articles are hosted by Taylor and Francis Online.
The problem of designing a plasma current and shape control system for a tokamak is dealt with, and a complete framework based on a validated linearized plasma model is developed. Starting from the equilibrium configurations to control and given the required performance, a procedure for choosing the parameters to control is outlined. Then, a method is proposed to evaluate the best performance one could ever expect from a control system, given the actual limitations due to the power supply. A procedure for designing a linear controller is described. The use of a modern multivariable technique, such as the H theory, allows one to take into account the many existing constraints and to find a trade-off among performance, robustness, and control effort. The methodology proposed is general and can be applied in principle to any tokamak plant. The simulation results refer to the International Thermonuclear Experimental Reactor (ITER) tokamak. A controller designed following almost the same steps has been successfully tested on an existing tokamak.