ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
House, Senate bills aim to improve nuclear decommissioning and waste disposal
Two bills were introduced in the last several weeks aiming to address nuclear power at the end of life—decommissioning plants and recycling used fuel.
R. L. Boivin, J. L. Luxon, M. E. Austin, N. H. Brooks, K. H. Burrell, E. J. Doyle, M. E. Fenstermacher, D. S. Gray, M. Groth, C.-L. Hsieh, R. J. Jayakumar, G. R. McKee, C. J. Lasnier, A. W. Leonard, R. A. Moyer, T. L. Rhodes, J. C. Rost, D. L. Rudakov, M. J. Schaffer, E. J. Strait, D. M. Thomas, M. Van Zeeland, J. G. Watkins, G. W. Watson, W. P. West, C. P. C. Wong
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 834-851
Technical Paper | DIII-D Tokamak | doi.org/10.13182/FST05-A1043
Articles are hosted by Taylor and Francis Online.
The DIII-D tokamak, located at General Atomics in San Diego, California, has long been recognized as being one of the best diagnosed magnetic fusion experiments. Composed of more than 50 individual systems, the diagnostic set takes advantage of a high number of large-aperture access ports. These instruments are used in support of basic control of the tokamak and experiments in the transport, stability, boundary and heating, and current drive science areas. These systems have contributed to the success of the Advanced Tokamak program, in addition to the many contributions to our physics understanding and real-time control of fusion-relevant plasmas. Numerous novel techniques have been developed, tested, and fielded on DIII-D including new approaches required for a burning plasma experiment. Details of the diagnostic systems will be described along with some illustrative recent results.