ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
D. Galeriu, R. Heling, A. Melintescu
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 779-782
Technical Paper | Tritium Science and Technology - Biology, Health, and Radiation | doi.org/10.13182/FST05-A1036
Articles are hosted by Taylor and Francis Online.
Tritiated water spills by nuclear installations result in uptake in aquatic organisms. The radionuclide uptake model BURN (developed by NRG, modified), considers not only tritium as tritiated water (HTO) but also the conversion into organically bound tritium (OBT). Comparison with the original BURN mode showed that the modified model gave more realistic results in terms of concentration levels, and consequently for dose assessment as result of ingestion of fishery products. For more accurate modelling, seasonal effects and half-life estimates asa function of body weight and water temperature must be taken into account. A first attempt is given, although limited empirical data gives reason to further investigation of this significant effect.