ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y. Ichmasa et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 775-778
Technical Paper | Tritium Science and Technology - Biology, Health, and Radiation | doi.org/10.13182/FST05-A1035
Articles are hosted by Taylor and Francis Online.
Heavy water (D2O) vapor release experiments were carried out in a greenhouse using deuterium as a substitute for tritium and uptake and loss kinetics of D2O in leaf of a tangerine tree and formation, translocation and retention of organically bound deuterium (OBD) in tangerine exposed to D2O under different growth stage were investigated. Rate constants of D2O uptake in leaves of tangerine were 0.2-1.11 hr-1 in the daytime release and 0.03-0.12 hr-1 in the nighttime release. Rate constants of D2O loss in leaf after daytime release were almost the same as those after the nighttime release. No significant differences in the half time of D2O loss were observed between daytime and nighttime releases, but those in winter experiments were about 6 times higher than those in summer ones. The retention of OBD of the edible part of tangerine at harvest was very low and OBD was 0.08% or 0.07% on average of D2O in air moisture in daytime or nighttime releases.