A
Adiabatic evolution of axisymmetric rotating plasma, 463
Advanced fuels, 28, 567
direct conversion issues, 567
power density of, 567
surface heat flux of, 567
Advanced Toroidal Facility (ATF), 58, 227, 481
density fluctuations in, 481
long pulse discharge, 227
magnetic field geometry of, 481
steady-state operation of, 227
Alpha particles, 318, 402
AMBAL-M tandem mirror device, 111
Anomalous transport, 40, 45, 52, 493
self-sustained turbulence, 52
ARTEMIS D-3He reactor, 337, 467, 551, 563
Ash pumping, 402, 406
dynamic model, 406
from TMR, 402, 406
from toroidal magnetic confinement systems, 406
Axial potential confinement, 111

B
Bootstrap current, 79, 186, 428, 432
driven by ohmic seed current, 432
Boozer coordinates, 397, 451

C
Cable-in-conduit superconductors, 575
stability analysis of, 575
Carbon sheet pump (CSP), 523
CASTOR tokamak, 473
Cluster beam injection, 540
for fueling, 540
for heating/current drive, 540
Coaxial helicity injection (CHI) current drive, 333, 387
HIST, 387
Coil systems, 186, 194, 571
Coil winding methods, advanced, 571
Compact Auburn Torsatron (CAT), 202
Compact Helical System (CHS) heliotron/torsatron, 58, 178, 231, 235, 239, 244, 248
density profiles in, 235, 248
electron power deposition in, 248
high-beta plasma in, 235
ICRF heating experiment, 244, 248
magnetic configuration effect, 231
MHD modes in, 231
NBI plasmas in, 231, 239
particle confinement in, 239
transport analysis and modeling, 252
Compact tokamak, 97, 144
steady state, 144
Compact toroid, 97, 329, 345, 382
FIX device, 345
TS-3 device, 97

Computer codes, 182, 278
DESCUR Fourier transformation of field line location code, 182
HINT finite three-dimensional β-equilibrium code, 182
OPT transport scaling and device optimization code, 444
POPCON ignition modeling, 278
VMEC nonlinear three-dimensional analysis of shallow vacuum well code, 182, 235

Confinement scaling laws, 444
DIII-D-JET, 444
DIII-D-OH, 444
DETEM, 444
Goldston L-mode, 444
H-mode, 444
ITER89-P, 444
Kaye-all-complex, 444
Kaye-Goldston, 444
Lackner-Gottardi, 444
L-mode, 444
Neo-Alcator, 444
Ohmic, 444
Rebut-Lallia, 444
Counter-helicity merging, 374
Current diffusion, 477
Current drivers, 79, 85, 131, 150, 186, 190, 210, 239, 244, 256, 333, 387, 391, 409, 417, 423, 436, 477, 540
bootstrap current, 79, 186
CHI, 333, 387
cluster beam injection, 540
ECRH, 169, 210, 219, 423
Current drivers (continued)

- EOH, 477
- fast wave, 150, 436
- ICRF heating, 131, 244, 256, 409, 417, 423
- lower hybrid wave heating, 423
- NBI, 85, 190, 210, 239, 244, 256
- passive cyclotron current drive for tokamaks, 423
- rotating magnetic field used with an FRC, 391

D

- DIII-D tokamak, 150, 444
- DIII-D-JET confinement scaling law, 444
- DIII-D-OH confinement scaling law, 444
- D-3He fusion, 28, 337, 397, 402, 467, 551, 555, 559, 563, 567
- ARTEMIS D-3He reactor, 337, 467, 551, 563
- direct energy conversion, 551, 563, 567
- fuel, 28
- fusion reactivity, 555
- reactor based on an FRC, 337
- reactor based on a tandem mirror, 397, 402
- safety and environmental considerations of, 28, 397
- start-up heating, 559
- tail effects on, 559
- Deuterium-tritium (D-T) fusion, 131, 547
- Diagnostics, 219, 282, 297, 409, 481
- GAMMA 10 tandem mirror for, 409
- ion temperature, 297
- magnetic, 219
- microwave scattering, 2-mm, 481
- NPA, 297
- plasma density profile, 282
- Diffusion coefficients, induced selective stochastic transversal, 406
- Diode mapping method, 206
- Direct energy conversion, 551, 563, 567
- advanced fuels, for, 567
- \(E \times B \) drift, 563
- Discharge, long pulse, in ATF, 227
- Discharge cleaning, 244, 532
- ECR discharge cleaning, 244
- using local island divertor in LHD, 532
- Disruption control by helical magnetic field, 459
- Dissipative trapped electron mode (DTEM), 444, 481
- confinement scaling law, 444
- Divertors, 123, 206, 314, 515, 519, 532, 536
- functions, 123
- helical divertor for LHD, 519
- Heliotron E, 206
- ion cyclotron resonance frequency fields, for helium recycling control, 536
- island divertor for LHD, 519, 532
- LHD, innovations in, 519
- Local Island Divertor, 532
- magnetic geometries of, 519
- poloidal RFP, 314
- rf advanced concept, 515
- DRACON fusion reactor, 547
- DRACON neutron source, 547
- Drift, 45, 202, 252, 481, 501, 563
- \(E \times B \) drift, 563
- islands, 202
- surface mapping, 202
- waves, 45, 252, 481, 501
- Drift wave turbulence models, 252
- Dynamo action, 318

E

- \(E \times B \) ion drift, 563
- Edge density profiles in CHS, 235
- Edge Ohmic Heating (EOH), 477
- Electron beam mapping, 202
- Electron cyclotron current drive, 150
- Electron cyclotron heating (ECH), 85, 169, 210, 270, 481, 497
- ATF, 481
- boronization technique, 85, 210
- L-2M Stellarator, 270
- Electron cyclotron resonance (ECR), 169, 210, 219, 244
- Electron cyclotron resonance heating (ECRH), 169, 210, 219, 248, 270, 423
- Electron inertia, 21
- Electron power deposition profile in CHS, 248
- Electron temperature, 248
- Electrostatic plasma potential, 413, 515
- Equilibrium analysis, toroidal, 314
- Equilibrium theory in spheromaks, 365
- Extrapol T-1 device, 382

F

- Fast wave current drive, 150
- FBX, 378
- FBX-II burner reactor, 378
- Field-reversed configuration (FRC), 91, 104, 329, 337, 341, 345, 349, 353, 357, 369, 382, 391, 467, 551, 559, 563
- ARTEMIS reactor, 337, 467, 551, 563
- D-3He reactor, based on, 337, 467, 563
- equilibrium shape, 353
- Extrapol type, 382
- formation of, 369
- global and local modes, 467
- lower hybrid drift instability, 341, 349, 353
- magnetic fields, 341, 467
- NBI, 559
- plasmas, 345, 349, 353, 357
- rotational instability, 357, 391
- start-up heating, 559
- tail effects, 559
- Field-reversed ion ring experiment, 104
- Field-reversed theta pinches, 91, 391
- Flux Amplification Compact Torus (FACT), 387
- Flux conservor, 361
- Force Free Helical Reactor (FFHR), 264
- FRC Injection Experiment (FIX) device, 345
- translation dynamics of, 345
- Free boundary plasma shift, 97, 219, 314
- Fuel cycles, 28
- Fueling methods, 540
- by cluster beam injection, 540

G

- GAMMA 10 tandem mirror device, 111, 409, 413
- MHD stability of, 409
- Goldston L-mode confinement scaling law, 444

H

- H-1 Heliac, 182, 282, 286
- magnetic configurations of, 286
- rf-produced plasmas in, 282
- H-mode characteristics, 32, 45, 190, 215, 413, 444, 489, 501
- CHS, of, 190
- HIEI tandem mirror of, 413
- scaling law, 444
- torque conditions, effect on, 489
- W7-AS stellarator, 32
- HANBIT tandem mirror device, 111
- Heat pulse propagation, 497
- Heating, 131, 244, 256, 409, 417, 423, 540
- by cluster beam injection, 540
- by ECRH, 248, 270
- ICRF, 131, 244, 256, 409, 417, 423
- tritium second harmonic cyclotron resonance (20 T), 131
Heliacs, 182, 186, 194, 282, 286
H-I, 182, 282, 286
Modular Helias-like Heliac, 186
TJ-II flexible heliac, 194
Helias-Heliac Hybrid Stellarator (HHHS), 186
Helical coils, winding techniques, 194, 571
Helically Symmetric Experiment (HSX), 273
Helical systems, status of, 58
Helicity Injected Spherical Torus (HIST), 387
Helicity injected tokamak experiment, 333, 387
Helicity injection, 333, 387
Heliotron DR, 202, 219
Heliotron-E, 85, 206, 219, 223, 252
LHD, 79, 123, 186, 256, 260, 264, 278, 515, 519, 523, 527, 532, 571
status and prospects, 58
Heliotron DR, 202, 219
Heliotron-E, 85, 206, 219, 223, 252
boronization of, 210
diverted plasma parameters of, 223
divertor, 206
experimental results, 85
potential structure, 85
transport, 85, 210, 252
Helium recycling, control of, 536
HIEI tandem mirror device, 111, 417
High-beta plasmas, 178, 219, 235, 329
HT-6M tokamak, 477
Hydrogen recycling, control of, in LHD, 523, 527
CSP, use of, 523
low Z films, use of, 527
Ignition, 278
LHD, characteristics of, 278
operation path method, 278
Inductively-Operated Day-Long Tokamak (IDLT) reactor, 432
Inertia, electron, 21
Instabilities, 21, 32, 45, 91, 111, 117, 161, 178, 202, 219, 252, 310, 341, 349, 353, 357, 387, 391, 409, 440, 455, 463, 467
drift wave, 45, 202, 252
flute, 117
lower hybrid drift, in FRC plasmas, 341, 349, 353
MHD, 32, 45, 91, 111, 117, 161, 178, 219, 310, 387, 409, 440, 455, 463, 467
rotational, in FRC plasmas, 357, 391
sawtooth, 21
Interchangeable Module Stellarator (IMS), 215
Interchange mode, of RFP plasmas, 310
Interferometer, multichannel rotating wheel, 282
International Center for Alternate Confinement Studies, 382
International Thermonuclear Experimental Reactor (ITER), 3, 131, 428, 444, 540
cluster ion beam injection for fueling and heating/current drive, 540
development of, 3
ICRF heating and current drive, 131
ITER89-P confinement scaling law, 444
outline design of, 3
technological issues, 3
tritium second harmonic cyclotron resonance (2QT) heating, 131
ion Bernstein waves, 131
ion cyclotron resonance frequency fields, use of, to control helium recycling, 536
ion-induced plasma flows, 215
ion rings, 104
FIREX, 104
formation of, 104
J
Joint European Torus (JET) plasmas, 509
Joule dissipation, 391
K
Kaye-all-complex confinement scaling law, 444
Kaye-Goldston confinement scaling law, 444
KT-2 large-aspect-ratio midsize diverted tokamak, 436
PF system, for, 436

L
Lackner-Gottardi confinement scaling law, 444
Large aspect ratio, 436
Large Helical Device (LHD), 79, 123, 186, 256, 260, 264, 278, 515, 519, 523, 527, 532, 571
coil winding methods, advanced, 571
CSP for hydrogen recycling control, use of, 523
discharge cleaning of plasma-facing surfaces, 532
divertor innovations, 519
hydrogen recycling, control of, 523, 527
ICRF heating in, 256
Local Island Divertor, 532
low Z films for hydrogen recycling control, use of, 527
magnetic geometries for divertor of, 519
NBI heating in, 256
negative ion source for, 256
physics of, 260
steady-state experiment, 123
wall conditioning, 532
Large aspect Experiment, 91
Last closed flux surface, 235
L/H transition physics, 485, 489
L-2M Stellarator, 270
L-mode confinement, 45, 52, 444, 485, 489
Goldston L-mode confinement scaling law, 444
Loss-cone boundaries, 413
Low aspect ratio helical devices, 178, 239, 244
CHS, 178, 239, 244
Low aspect ratio tokamaks, 138, 361, 440
Lower hybrid drift instability, 270, 341, 349
Lower hybrid wave heating, 423
Low Z films, 527
coating technique for, 527
use of for hydrogen recycling control, 527
M
Magnetic detection, 219
Magnetic field fluctuations, 337, 455, 473, 489, 493
Magnetic field fluctuations (continued)
CASTOR tokamak, in, 473
FRC, 337
radial components of, 473
root-mean-square value, 473
stochasticity, 455, 493, 505
Magnetic islands, 45, 202, 444, 505
island overlapping model, 505
Magnetic surface mapping, 198, 202, 206, 286, 505
electron beam method, 202, 286
separatrix mapping method, 505
Magnetohydrodynamic (MHD) stability, 32, 45, 91, 111, 117, 161, 178, 219, 231, 310, 387, 409, 440, 455, 463, 467
ballooning modes, 45, 117, 150
characteristics, 198, 202, 286, 455
Motions, 198, 202, 206, 286, 455
drift surface, of, 202
electron beam technique, 202, 286
magnetic flux surfaces, of, 202, 286, 455
magnetic surface, of, 198
static beam-resistance method, 206
Mercier criterion, 310
Mirrors, 111, 117
axisymmetric, 117
tandem, 111,
Modular Heliotron concept, 260
Modularized Advanced Toroidal Facility, 260
Modulator, 551
Multichannel rotating wheel interferometer, 282
N
Neo-Alcator confinement scaling law, 444
Neutral beam injection (NBI), 85, 190, 210, 239, 244, 256
NBI heating, 231, 244, 256
Neutral particle energy analyzer (NPA), 297
Nonlinear phenomena, 21
Nuclear elastic scattering, 555
O
Ohmic confinement scaling laws, 444
Ohmic seed current, 432
OPT transport scaling and device optimization code, 444
P
Particle confinement, 239, 264, 509
CHS, 239
ion loss, 509
orbit simulations, 509
Passive cyclotron current drive for tokamaks, 423
Plasma focus device, 325
axisymmetric, 463
boundary conditions, 97, 219, 455
confinement, 150, 210, 301, 306, 417, 444, 477
currentless steady state, 123, 270
density profiles, 282
D3He plasmas, 28, 337, 397, 402, 406, 555, 559
diagnostics, 219, 282
disruption control, 459
D-T, 131
ECRH, 169, 198, 210, 219, 413
density profiles, 215
FRC plasma, 345, 349, 353, 357
free boundary shift, 97, 219
heliotron/torsatron, 79, 178
high-beta, 178, 219, 235, 329
hot-ion-mode, 409
ion losses at tokamak plasma edge, 509
JET plasmas, 509
kinetics model of D3He plasma in TMR, 402, 406
KT-2 large aspect ratio, midsize, diverted tokamak, 436
low aspect ratio tokamak plasma, 361
magnetic islands, 45, 202, 455
magnetic stochasticity, 455, 493
NBI, 85, 190, 210, 231, 239
particle simulations of, 509
potential structure, 85, 413, 515
relaxation modes, 329
RFP plasmas, 293, 297, 301, 306, 310
rotation, axisymmetric, 463
spheromak, 325
stellarator, 215
stochastic regions, 455, 493
tokamak, optimization of, 150, 361, 428, 432, 509
toroidal, 52
transport, 21, 40, 45, 85, 210, 252, 417, 485, 489, 493
ULART plasma, 161
Poloidal divertor reversed field pinch, 314
Poloidal field (PF) system, 436
Ponderomotive force, 515
Potentials, 85, 111, 413
axial confinement of, 111
electrostatic, 413, 515
structure of, 85, 413, 515
Power density of advanced fuels, 567
Q
Quasi-symmetry concept applied to helical toroidal systems, 451
R
Radio frequency (rf), 131, 515
Rebut-Lallia confinement scaling law, 444
Recoil tail creation, 555, 559
Recycling control, 523, 527, 536
hydrogen, 536
helium, in LHD, 523, 527
Resonant magnetic perturbation, 459
Reversed field pinch (RFP), 40, 293, 297, 301, 306, 310, 314
equilibrium of plasma, 310
experiments in IFTES, 306
physics problems of, 40
plasma confinement parameters, 301, 306
poloidal divertor, 314
rf divertor system, 515
RFP devices, 40, 293, 297, 301, 306
IFTES, 306
MST², 40
REPUTE-1, 297
RFX, 40
STE-2, 293
T2, 40
TPEIRM15, 301
TPEIRM20, 40, 301
TPE-2M, 40
TPE-RX, 40
Rotating magnetic field, 391
S
Saturn stellarator, 223
Scaling laws, 297
REPUTE-1 RFP plasma, of, 297
Scrape-off layer, 473
Separatrix, 91, 293, 505
mapping method, 505
Separatrix Test Experiment (STE), 293
global discharge parameters, 293
STE-2 RFP device, 293
Sawtooth instabilities, 21
Self-sustained turbulence, 52
Sheared plasma flows, 501
Small Tight Aspect Ratio Tokamak (START), 144, 161, 382, 444
OPT transport scaling and device optimization code, 444
Spherical tokamak, 382
Spheromak, 97, 104, 161, 325, 365, 369, 374, 382, 387
equilibria, 365
FACT, 387
formation of FRC by, 369, 374
free boundary, 97
SPHEX experiment, 365
Spheromak-like magnetic configuration, 325
SPHEX, 365
START device, 144, 161, 382, 444
Steady-state operation, 144, 227
ATF, 227
START, 144
H-1, 182, 186, 282, 286
heating system, 198
helical axis stellarator, 186, 282
Heliotron DR, 202, 219
Heliotron-E, 85, 206, 219, 223
HHHS, 186
HSX, 273
IMS, 215
L-2M, 270
magnetic surface mapping of, 198
modular magnetic system, 264
optimization of, 71
parameters of, 198
quasi-helically symmetric, 273
quasi-symmetry, 451
results, 198
Saturn, 223
TJ-I U torusron, 198
Wendelstein 7-AS, 32, 58, 219, 252
Wendelstein 7-X, 71
Stochastic magnetic field, 455, 493, 505
Superconductors, for helical devices, 575
stability analysis of, 575
Surface heat flux, advanced fuel, 567
Sympronan modularized torsatron, 260

Tail effects on start-up heating, 559
Tandem mirror devices, 111, 397, 402, 406, 409, 413

AMBAL-M, 111
D-3He reactor basis, 397
GAMMA 10, 111, 409, 413
HANBIT, 111
HIEI, 111, 417
physics problems of, 397
TMR, 402, 406
Tandem Mirror Reactor (TMR), 402, 406
ash pumping, of, 402, 406
kinetic model, 402
TJ-II flexible heliac, 194
advanced, 3, 131, 428
bootstrap current driver, 79, 186
CASTOR tokamak, 473
compact, 97, 144
confinement scaling laws, 444
DIII-D device, 150
HT-6M tokamak, 477
IDLT, 432
ion losses at plasma edge, 509
ITER, 3, 131, 428
jet, 509
large aspect ratio tokamak, 436
L/H transition in, 485
low aspect ratio, 138, 161, 333, 361, 440
ohmic seed current driver, 432
passive cyclotron current drive, for, 423
PF system, 436
plasmas, 150, 361, 428, 432, 509
START, 144, 161
steady-state, 144
TDD, 505
TFTR, 131
TPX, 131, 428
transport, 21, 40, 45, 85, 210, 252, 417, 485, 489, 493, 497
ULART, 161
ultra-long pulse reactor, 432
University of Tokyo low aspect ratio tokamak, 440
Tokamak Fusion Test Reactor (TFTR), 131
Tokamak Physics Experiment (TPX), 131, 428
major parameters and design features, 428
status, 428
Toroidal Divertor Tokamak (TDT) fusion concept, 505

Toroidal Z pinch (TZP) fusion reactor, 318
Torque conditions, 489
Torsatron, 194, 198, 223, 227, 260, 481
ATF, 227, 481
density fluctuations in ATF, 481
ECH, 131, 481
TJ-II torusron, 194
TJ-IU torusron, 198
TPE-2M RFP device, 40
TPE-RX RFP device, 40
TPE1RM15 RFP device, 301
TPE1RM20 RFP device, 40, 301
Transport phenomena, 21, 40, 45, 85, 210, 252, 417, 485, 489, 493, 497
anomalous transport, 40, 45, 493
coefficient, 485, 497
drift wave turbulence, 252
heat pulse propagation, 497
Heliotron E, 85, 210, 252
L/H transition modeling, in tokamaks, 485, 489
matrix, 493
models, 123, 252, 485
neoclassical model, 252
radial, 417, 497
Traveling wave direct energy converter, 551, 563
Tritium second harmonic cyclotron resonance (20 T), 131
TS-3 merging spheromak device, 97, 161

Ultra-low aspect ratio tokamak (ULART), 161
University of Tokyo low aspect ratio tokamak, 440
Uragan-2 stellarator, 223
Uragan-3 stellarator, 223
Uragan-3M stellarator, 223

W
W7-AS stellarator, 32, 58, 169, 252
H-mode characteristics, 32
large aspect ratio of, 32
parameter scans, 169
transport in, 169, 252
Wall conditioning, 532
Whisker magnetic field lines, 206

Z
Z pinch, 325