ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Arnaud Duthou, Aurélien Mattei, Alain Boue (Rolls-Royce Civil Nuclear)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1568-1580
The ability of microprocessor-based I&C safety platforms to process a large amount of complex parameters as well as the difficulty to maintain older analog equipment led to the gradual replacement of the hardwired technologies installed long ago. However, their complexity and cost, combined with new safety requirements, has generated a renewed interest for the Hardwired technologies that are usually simpler and cheaper to qualify. As Hardwired systems still have limited data processing, they usually cannot be used efficiently for the complete protection system of complex reactors or architectures. They however are ideal for other functions such as diverse actuation systems, priority logic, post-accident systems or even main protection systems for simple architectures such as research reactors’. Nevertheless, most existing “non-programmed” technologies have not evolved much since their creation several decades ago and therefore suffer from obsolescence issues and capability limitations. Thus the creation of a truly modern, performant and purely hardwired technology (i.e. not based on FPGA) represents a progress in the catalogue of next generation technologies available for 1E/Cat A. safety I&C. The development of a modern I&C platform is always a challenge as the requirements are continuously evolving toward more stringent standards, especially for safety classified I&C systems. In order to meet all these requirements, the platform shall provide state of the art electronic features and its design criteria shall include flexibility, scalability and space optimization as well as integrated communication. Consequently, the creation of a next generation safety I&C platform based on purely hardwired technology represents a significant challenge and this paper will present the method used by Rolls-Royce to achieve a successful result for its new Hardline platform.