Microstructure evolution due to irradiation in a nuclear reactor can have a dramatic effect on material properties. A better understanding of this evolution is necessary for developing improved nuclear fuels and materials. The ability to measure such changes in real time is extremely limited due to the harsh conditions, high radiation fields and limited access of the reactor environment. Through carefully designed experiments, measurement of elastic properties can be tied directly to microstructure. We present the methodology, design and deployment plan for an instrument that has been developed to monitor grain microstructural changes during irradiation. Our measurement approach involves exciting and measuring the resonant frequency of a thin cantilever beam. Excitation and detection of the flexural vibrations of the beam are accomplished using optical methods which require only an optical fiber connection between the instrumentation and the sample. This technique has been demonstrated in a laboratory setting to monitor the recrystallization of highly textured copper during high temperature annealing. A test capsule incorporating this technique has been developed for in-reactor testing. The capsule has been designed to be compatible with a reusable test module which allows simplified insertion in the TREAT reactor at INL. Irradiation in the TREAT reactor to monitor the recrystallization transition of a pure metal is planned for 2019.