ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Clara A. Lloyd, Anthony R. M. Roulstone, Campbell Middleton (University of Cambridge)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1042-1049
Small Modular Reactors (SMRs) based on established light-water technology have gained a lot of attention from the nuclear industry; however, the potential that SMRs have to reduce the cost of nuclear construction has been under-studied. Modularisation is a cost reducing mechanism where a SMR power plant is subdivided into smaller units, or modules. These modules can be produced offsite in a controlled environment, potentially offering cost reductions that offset their apparently higher capital costs.
This paper will investigate the effects modularisation and standardisation might have on SMR capital costs. Modularisation and standardisation not only reduce direct and indirect costs, respectively, but also enable activation of other cost-reducing mechanisms, such as shifting construction work from site to a factory, transferring learning between tasks, and achieving economies of multiples. It will show that constructing a SMR using the same methods as current large reactors is not economically feasible and will demonstrate how modularisation reduces SMR capital costs.
The primary constraints on module size are imposed by weight and height transport limitations, linking reactor size to ease of modularisation. This leads to an analysis of which SMR components and structures should be targeted for modularisation in order to achieve optimal cost benefits.