ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Charles Forsberg (MIT), Akira Omoto (Tokyo Inst Technol), Richard Lester (MIT), Ryoichi Komiyama, Yasumasa Fujii (Univ of Tokyo), Tomihiro Taniguchi (Tokyo Inst Technol), Nestor Sepulveda, Geoffrey Haratyk (MIT), Kazuaki Matsui (Inst for Applied Energy), Xing L. Yan (JAEA), Tomofumi Shibata, Tomoko Murakami (Inst for Energy Economics Japan)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 872-878
Concerns about climate change will require a transition from fossil fuels to nuclear, wind, and solar. Because energy is about 8% of the gross national product of the world, it is essential to avoid large increases in energy costs that would significantly decrease human welfare. Fossil fuel electricity generating systems have relatively low capital costs and high operating costs fuel. This characteristic enables economic variable electricity production that matches electricity demand because the cost of electricity from a fossil plant operating at part load is not that much different from a plant operating at full capacity.
Nuclear, wind and solar systems have high capital costs and low operating costs. If these electric generating assets are operated at half capacity, the cost of electricity is nearly doubled. Their high capital costs require full use of these systems. Wind and solar output depends upon location and local weather conditions they do not provide dispatchable electricity or dispatchable energy for other electricity and heat but operating nuclear plants at low capacity factors is expensive. The question is how do we create an economic power system with minimum burden to the society by a combination of low-carbon dispatchable and non-dispatchable energy sources, replacing the traditional role of fossil fuels, to fulfill the requirements for a safe, secure, affordable and environmentally acceptable energy source? Independent of concerns about climate change, development of nuclear systems that could provide dispatchable energy (electricity and heat) with base-load reactor core operation would broaden the capabilities to economically meet global energy needs a no-regrets nuclear energy strategy for the future.
To address these challenges researchers from the United States and Japan undertook a series of studies to address how to make this transition in the context of the Future of Nuclear Power. The Executive Summary [1] of the final report is below.