ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mélany Gouëllo, Jouni Hokkinen, Teemu Kärkelä (VTT Technical Research Centre of Finland)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 293-301
(LWR), radioactive iodine may be released into the environment, impacting significantly to the source term. Determination of the amount released, and of the physical state of iodine (gaseous form or solid aerosol form), is thus a major issue, regarding the improvement of the accident management and mitigation measures The experimental EXSI-PC facility has been specifically designed and built to investigate the behaviour of iodine containing fission product deposits on primary circuit surfaces during a severe nuclear accident. Studies were conducted with two mixtures of caesium iodide and molybdenum oxide (Mo/Cs=1.6 and Mo/Cs=5) in order to assess the possible chemical reactions and the effect on the transport of chemical species through the primary circuit. In addition, two carrier gas compositions (Ar/H2O versus Ar/Air) were studied to highlight the effect of oxygen partial pressure.
In this work, the influence of molybdenum presence on the caesium iodide behaviour under two atmospheres: Ar/H2O and Ar/Air (86.7/13.3 vol.%) was studied. The release of gaseous iodine was higher when the oxygen partial pressure was higher (i.e. for Ar/Air atmosphere). In addition, the results showed that an initial Mo/Cs molar ratio of 1.6 produced about 1.5 times higher amount of gaseous iodine than a ratio of 5. The formation of caesium molybdates was identified in the crucible after the experiments, confirming that the reaction between caesium and molybdenum is the reason for the observed formation of gaseous iodine. The experimental results are mostly in accordance with the equilibrium calculations performed with FactSage.