ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Julio Diaz, Qingqing Liu, Victor Petrov, Annalisa Manera, Xiaodong Sun
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1442-1465
Research Article | doi.org/10.1080/00295450.2022.2133504
Articles are hosted by Taylor and Francis Online.
Radiation transmission measurement methods have become widely implemented in the study of two-phase flow due to leaping advancements in detector efficiency, spatial resolution, and high-speed measurement capabilities. However, radiation-based measurements of boiling experiments bear several challenges due to the mismatch of calibration to experimental conditions, beam hardening, thermal expansion, and material and working fluid density changes with temperature. The present research focuses on developing methods to analyze the high-resolution X-ray radiography measurements of the post-critical heat flux (Post-CHF) heat transfer facility built at the University of Michigan that is intended to perform high-pressure and high-temperature measurements; the experimental test section is made of Incoloy-800H and is characterized as a cylindrical geometry expanding 1.0 m in length. The broad goal of the experiment is to build a high-resolution database to develop models for inverted annular film boiling and inverted slug film boiling through dispersed flow film boiling. The methods developed in this research model the thermal effects of the postulated challenges in order to properly scale the X-ray calibration measurements to the experimental conditions. Additionally, a cross-section-weighted method is developed to estimate the axial void fraction; this method is validated by modeling the test section with synthetic void fraction data. Last, preliminary high-speed X-ray measurements performed at subcooled boiling conditions are presented and analyzed with the developed methods, which include bubbly, slug, and churn flows.