ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Julio Diaz, Qingqing Liu, Victor Petrov, Annalisa Manera, Xiaodong Sun
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1442-1465
Research Article | doi.org/10.1080/00295450.2022.2133504
Articles are hosted by Taylor and Francis Online.
Radiation transmission measurement methods have become widely implemented in the study of two-phase flow due to leaping advancements in detector efficiency, spatial resolution, and high-speed measurement capabilities. However, radiation-based measurements of boiling experiments bear several challenges due to the mismatch of calibration to experimental conditions, beam hardening, thermal expansion, and material and working fluid density changes with temperature. The present research focuses on developing methods to analyze the high-resolution X-ray radiography measurements of the post-critical heat flux (Post-CHF) heat transfer facility built at the University of Michigan that is intended to perform high-pressure and high-temperature measurements; the experimental test section is made of Incoloy-800H and is characterized as a cylindrical geometry expanding 1.0 m in length. The broad goal of the experiment is to build a high-resolution database to develop models for inverted annular film boiling and inverted slug film boiling through dispersed flow film boiling. The methods developed in this research model the thermal effects of the postulated challenges in order to properly scale the X-ray calibration measurements to the experimental conditions. Additionally, a cross-section-weighted method is developed to estimate the axial void fraction; this method is validated by modeling the test section with synthetic void fraction data. Last, preliminary high-speed X-ray measurements performed at subcooled boiling conditions are presented and analyzed with the developed methods, which include bubbly, slug, and churn flows.