ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
House, Senate bills aim to improve nuclear decommissioning and waste disposal
Two bills were introduced in the last several weeks aiming to address nuclear power at the end of life—decommissioning plants and recycling used fuel.
Joffrey Dorville, Jacob Tellez, Conner Glatt, Andrew Osborne, Jenifer Shafer, Jeffrey King
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S26-S51
Technical Paper | doi.org/10.1080/00295450.2022.2072649
Articles are hosted by Taylor and Francis Online.
The Megawatt Implementation of a NuclEar ReActor using Low-enrichment uranium (MINERAL) is designed to deliver 2 MW(electric) of steady-state electricity to a colony established on the surface of Mars with a minimum lifetime of 10 years. The main challenge associated with a low-enrichment uranium fission surface power system is reducing the total mass, which will be higher than that of an equivalent high-enrichment uranium system. Optimizing the mass of the system is crucial to limit the amount of Earth-Mars cargo needed to deploy a MINERAL unit. The use of yttrium hydride as a moderator has shown promise in reducing the overall mass of the reactor. An in-house Python framework evaluates the neutronic, thermal-hydraulic, and heat rejection performance throughout the design process. The final design iteration uses a CO2 Brayton cycle cooled by a passive heat rejection system consisting of six panels with a total surface area of 4752 m2. The cylindrical core is fueled with low-enrichment uranium monocarbide with 0.83 wt% of pure 157Gd moderated with yttrium hydride and surrounded by a beryllium oxide reflector. The reactivity is controlled by ten control drums and a central control rod, which provide enough margin to operate the reactor and ensure its subcriticality in case of a submersion accident. The mass of the core with the reflector, reactivity control system, and shield is 7.2 tonnes.