ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Linfeng Yan, Dawei Wang, Hsingtzu Wu
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1822-1831
Technical Paper | doi.org/10.1080/00295450.2022.2083750
Articles are hosted by Taylor and Francis Online.
A passive residual heat removal system plays an important role in cooling the reactor core under accident conditions. The computational fluid dynamics (CFD) software package ANSYS Fluent is used to analyze the influence of malfunction of any 2 of 12 tubes of a passive residual heat removal heat exchanger (PRHR HX) on its performance. Then the computation was validated using the published experimental data. Five different scenarios and a normal condition are computed to analyze the influence of locations of the malfunctioning tubes on the heat transfer performance of the PRHR HX. The results show that the tube defect reduces the amount of heat transferred by the PRHR HX. However, it is correlated with the size of the surface area of the deficient tubes instead of their locations. In other words, analysis suggests that defect tubes with the same surface area should result in similar damage regardless of the location.