ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Linfeng Yan, Dawei Wang, Hsingtzu Wu
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1822-1831
Technical Paper | doi.org/10.1080/00295450.2022.2083750
Articles are hosted by Taylor and Francis Online.
A passive residual heat removal system plays an important role in cooling the reactor core under accident conditions. The computational fluid dynamics (CFD) software package ANSYS Fluent is used to analyze the influence of malfunction of any 2 of 12 tubes of a passive residual heat removal heat exchanger (PRHR HX) on its performance. Then the computation was validated using the published experimental data. Five different scenarios and a normal condition are computed to analyze the influence of locations of the malfunctioning tubes on the heat transfer performance of the PRHR HX. The results show that the tube defect reduces the amount of heat transferred by the PRHR HX. However, it is correlated with the size of the surface area of the deficient tubes instead of their locations. In other words, analysis suggests that defect tubes with the same surface area should result in similar damage regardless of the location.