ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Sunil Kumar Jatav, Vijay Kumar Pandey, Parimal P. Kulkarni, Arun K. Nayak, Upender Pandel, Rajendra K. Duchaniya
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1756-1768
Technical Paper | doi.org/10.1080/00295450.2022.2061291
Articles are hosted by Taylor and Francis Online.
To mitigate severe accidents in nuclear reactors, the present research sheds light on the melt-coolability behavior of corium with hypothetical experiments that have been performed at two different nozzle diameters under bottom flooding conditions. In this research, a simulant material CaO-Fe2O3 powder mixture was melted and poured into the test section that was embedded in the test facility (using a bottom pouring furnace instead of a tiltable furnace). Then, from the bottom of the melt pool, water was flooded through a nozzle at a pressure of 0.70 bar and a water flow rate of 12 liters per minute. Because of the interaction between the water and melt, the melt quenched and converted into fine porous debris, and the temperature history was recorded using 12 K-type thermocouples connected to a data acquisition system. The average quenching time and porosity of the debris were affected by variations in the nozzle diameter. This research will help in understanding real core-melt accidents that generally occur in nuclear power plants.