ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Vojtěch Caha
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1591-1604
Technical Paper | doi.org/10.1080/00295450.2022.2053807
Articles are hosted by Taylor and Francis Online.
This paper is aimed at the application of computational fluid dynamics (CFD) calculations for lateral flow modeling in rod bundles of Russian-type pressurized water reactors with hexagonal fuel rod lattice by subchannel analysis under a constant temperature. The subchannel code SUBCAL and CFD code ANSYS Fluent with the Reynolds stress turbulence model, which is capable of solving the anisotropic flow present in rod bundles, are used. Both methods are compared in terms of calculations in rod bundles. The literature review of available experiments of rod bundles suitable for CFD calculation validation follows. This paper describes the created CFD models on a triangular lattice, which are subsequently validated on selected experimental data in a wide range of Reynolds numbers and geometry (pitch-to–rod diameter ratio) together with mesh sensitivity analysis. The main part of this work is to develop a new equation for the lateral flow resistance coefficient for the subchannel code based on CFD calculations. Within these calculations, the turbulent mixing coefficient β for hydraulically smooth rod bundles, which is related to the geometry, and the momentum-energy transfer analogy correction factor ε are also evaluated and for which the equation is subsequently proposed.