ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Vojtěch Caha
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1591-1604
Technical Paper | doi.org/10.1080/00295450.2022.2053807
Articles are hosted by Taylor and Francis Online.
This paper is aimed at the application of computational fluid dynamics (CFD) calculations for lateral flow modeling in rod bundles of Russian-type pressurized water reactors with hexagonal fuel rod lattice by subchannel analysis under a constant temperature. The subchannel code SUBCAL and CFD code ANSYS Fluent with the Reynolds stress turbulence model, which is capable of solving the anisotropic flow present in rod bundles, are used. Both methods are compared in terms of calculations in rod bundles. The literature review of available experiments of rod bundles suitable for CFD calculation validation follows. This paper describes the created CFD models on a triangular lattice, which are subsequently validated on selected experimental data in a wide range of Reynolds numbers and geometry (pitch-to–rod diameter ratio) together with mesh sensitivity analysis. The main part of this work is to develop a new equation for the lateral flow resistance coefficient for the subchannel code based on CFD calculations. Within these calculations, the turbulent mixing coefficient β for hydraulically smooth rod bundles, which is related to the geometry, and the momentum-energy transfer analogy correction factor ε are also evaluated and for which the equation is subsequently proposed.