ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Athena A. Sagadevan, Sunil S. Chirayath
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1511-1521
Technical Paper | doi.org/10.1080/00295450.2022.2057775
Articles are hosted by Taylor and Francis Online.
It has become a common practice to store sufficiently cooled spent nuclear fuel (SNF) assemblies in interim storage dry casks with passive cooling. These dry casks require nuclear safeguards monitoring because they contain plutonium. Past studies on dry cask modeling and simulations have shown that a remote monitoring system (RMS) situated inside the dry cask could continually monitor and detect the removal of even a single SNF assembly from the cask. This conceptual RMS design was tested by conducting laboratory-scale experiments using small-size 252Cf neutron sources. These small-size sources were surrounded by neutron-reflecting materials in the experiments to mimic the SNF assemblies as a surface neutron source to the fission chamber detectors of the RMS. Experimental and simulation results showed that the removal or diversion of even a single neutron source is detectable within 4 min with a probability of detection greater than 80%.