ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Md Motiur Rahman, Tahmina Tasnim Nahar, Dookie Kim, Dae-Wook Park
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1453-1470
Technical Paper | doi.org/10.1080/00295450.2022.2033597
Articles are hosted by Taylor and Francis Online.
The dynamic responses of three storied auxiliary building of a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall are investigated in this study. The dynamic characterization is weighed through a shake table test and evaluated the efficiency of various structural modeling systems for evaluating seismic responses. The shear wall was subjected to a collaborative research round-robin analysis conducted by the Korea Atomic Energy Research Institute to forecast seismic responses of the auxiliary building in the NPP using a shake table test. The shake table test was performed with five different levels of intensity measures of the base excitation to obtain acceleration responses from different positions of the building in one horizontal direction (front-back). The main motivation of this study is to develop a nonlinear numerical model and examine the efficiency of various modeling approaches for evaluating the performance under seismic loading. Three numerical modeling approaches, i.e., multi-layer shell element modeling (MLSM), fiber beam-column element modeling (FBCM), and beam-truss element modeling (BTM), are generated to simulate the seismic response behaviors of the auxiliary building structure. Modal analysis, floor response spectra, acceleration amplification factor along with height, and story shear force of the building are compared as they are critical responses for evaluating the seismic vulnerability of the structure. The comparison shows that all the nonlinear numerical modeling approaches, i.e., MLSM, FBCM, and BTM, can predict the complex behavior of a shear wall system for low earthquake level, but for high earthquake level, MLSM shows better agreement with the shake table experiment. So, it is recommended to use MLSM modeling for nonlinear analysis with an earthquake intensity measure of 1 g or more.