ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
W. Van Snyder
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1416-1432
Technical Paper | doi.org/10.1080/00295450.2021.2024023
Articles are hosted by Taylor and Francis Online.
A new form for metallic nuclear reactor fuel is proposed consisting of finely divided particles (tens of micrometers) mixed with sodium for thermal bond. Fuel pins filled with this form of fuel would have greater fuel density than with solid slugs fabricated at 75% smear density. Greater fuel density reduces enrichment requirements for initial fuel loading. A larger surface-to-volume ratio allows more fission product gases and metallic fission products to diffuse out of fuel particles, resulting in less swelling, greater burnup before processing, and simple preliminary thermomechanical spent fuel processing steps that might be used several times before the more expensive pyroelectric process develolped for the Experimental Breeder Reactor II (EBR-II). Less frequent pyroelectric processing, simple preliminary processing, and a larger surface-to-volume ratio reduce total processing cost. Preliminary processing produces separate fission products, in particular cesium and strontium, in metallic rather than salt or mineral form, thereby simplifying and reducing storage cost. Intrinsically structurally weak fuel would not rupture fuel pin cladding by swelling. The expense and complexity of the process would be offset by reduced total system cost.