ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a roaring start in Atlanta, Ga., Tuesday morning with an opening plenary that was a live highlight reel discussing the latest industry achievements.
Starting with a lively promo video that left the audience amped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
W. Van Snyder
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1416-1432
Technical Paper | doi.org/10.1080/00295450.2021.2024023
Articles are hosted by Taylor and Francis Online.
A new form for metallic nuclear reactor fuel is proposed consisting of finely divided particles (tens of micrometers) mixed with sodium for thermal bond. Fuel pins filled with this form of fuel would have greater fuel density than with solid slugs fabricated at 75% smear density. Greater fuel density reduces enrichment requirements for initial fuel loading. A larger surface-to-volume ratio allows more fission product gases and metallic fission products to diffuse out of fuel particles, resulting in less swelling, greater burnup before processing, and simple preliminary thermomechanical spent fuel processing steps that might be used several times before the more expensive pyroelectric process develolped for the Experimental Breeder Reactor II (EBR-II). Less frequent pyroelectric processing, simple preliminary processing, and a larger surface-to-volume ratio reduce total processing cost. Preliminary processing produces separate fission products, in particular cesium and strontium, in metallic rather than salt or mineral form, thereby simplifying and reducing storage cost. Intrinsically structurally weak fuel would not rupture fuel pin cladding by swelling. The expense and complexity of the process would be offset by reduced total system cost.