ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Kun-Su Lim, Chang-Lak Kim, Sanghwa Shin
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1406-1415
Technical Paper | doi.org/10.1080/00295450.2022.2031496
Articles are hosted by Taylor and Francis Online.
Determining whether to release a site after decommissioning a nuclear facility should be preceded by an environmental impact assessment of the exposure radiation dose according to the radionuclides in the soil. Currently, in Korea, various evaluation methodologies and decommissioning technologies are being studied for the first decommissioning of nuclear power plants, starting with Kori Nuclear Power Plant Unit (Kori-1), which is based on the “Multi-Agency Radiation Survey and Site Investigation Manual MARSSIM” developed in the United States. The scope and evaluation targets of deep soil may differ depending on the purpose, but it has been confirmed that the International Atomic Energy Agency and the U.S. Nuclear Regulatory Commission are targeting subsurface soil. MARSSIM outlines the need for an evaluation of this subsurface soil but does not suggest specific methods. In NUREG-1757, which complements MARSSIM, it is confirmed that subsurface soil specifically means a soil layer that is 15 to 30 cm deep in the surface layer. In the current study, using the previously verified computational code RESidual RADioactivity (RESRAD)-ONSITE, a methodology for summation is proposed to evaluate the impact of subsurface soil more flexibly and realistically while minimizing the exposure dose evaluation procedure. When using RESRAD-ONSITE according to this evaluation methodology, it was confirmed that it is possible to respond to changes in the depths of various soil layers. In addition, it was also confirmed that this methodology is adaptable to the contamination of nuclides, such as 60Co, 137Cs, 152Eu, and 154Eu, which are expected to be major nuclides when decommissioning nuclear facilities.