ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Hong Xu, Aurelian Florin Badea, Xu Cheng
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1324-1336
Technical Paper | doi.org/10.1080/00295450.2021.2014755
Articles are hosted by Taylor and Francis Online.
The Primary Coolant Loop Test Facility [Primӓrkreislӓufe Versuchsanlage (PKL)] PKL I2.2 Benchmark experiment for an intermediate-break loss-of-coolant accident (IB-LOCA) with a 13% or 17% break at the cold leg was performed in the Organisation for Economic Co-operation and Development/PKL-4 project at PKL in Erlangen, Germany. Analysis of Thermal-Hydraulics of LEaks and Transients (ATHLET) 3.1A was used at Karlsruhe Institute of Technology for its posttest calculations. Crucial predicted parameters were compared with measured data. The calculated trend of the selected parameters fits well with that of the experimental data except for the phenomenon of core heatup and the value of the peak cladding temperature. A fast Fourier transform–based method was chosen to quantify the matching of the parameter trends. According to the quantitative assessment, the IB-LOCA scenario and its detailed phenomena can be predicted well by ATHLET. Additionally, some discrepancies, i.e., insufficient reliable predictions for break mass flow and for reactor pressure vessel collapsed water level, were also observed, possibly deserving another study to undergo deeper scrutiny.