ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Jun Fang, Yiqi Yu, Haomin Yuan, Elia Merzari, Dillon R. Shaver
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1233-1243
Technical Paper | doi.org/10.1080/00295450.2021.1957373
Articles are hosted by Taylor and Francis Online.
To support the design efforts of advanced sodium-cooled fast reactors (SFRs), a series of computational fluid dynamics (CFD) simulations are performed to investigate the pressure change along various flow passages in the proposed SFR system. The simulations are carried out with the state-of-the-art spectral element flow solver, Nek5000. Two specific case studies are presented in this paper: the flow exiting the axial neutron reflector channels and the flow entering the fuel pin bundle. Due to the high Reynolds numbers expected, a Reynolds-averaged Navier-Stokes (RANS) approach is necessary to model the turbulence. A newly developed regularized RANS model is adopted in the related CFD calculations. The first case study explores the effect of Reynolds number on the pressure change when flow exits the reflector channels. The pressure change in this case has two major contributors: the change due to wall friction and the Bernoulli effect. It is noted that the nondimensional pressure loss follows a log-linear trend up to Re = 105, and then the trend is flattened. In the second case study, the advanced NekNek coupling capability is tested where an integral domain can be divided into multiple subdomains with coupling interfaces, which would greatly ease the meshing process of complex engineering geometries and potentially save computational resources. The preliminary results obtained so far confirm the consistency between the NekNek results and those produced by regular Nek5000 simulation. The presented work demonstrates the readiness and flexibility of the related CFD techniques, which is part of the broader effort to leverage cutting-edge CFD to inform the advanced nuclear reactor designs.