ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Veronica Karriem, Edward M. Duchnowski, Bin Cheng, Lance L. Snead, Jason R. Trelewicz, Nicholas R. Brown
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1102-1113
Technical Paper | doi.org/10.1080/00295450.2021.2011573
Articles are hosted by Taylor and Francis Online.
This study evaluates beryllium-based two-phase composite moderators as an alternative to graphite in an evaluation of reactor performance and safety characteristics. Historically, modular high-temperature gas-cooled reactors (mHTGRs) use graphite as a moderator because of its high moderating ratio and reasonable thermal properties; however, graphite has unfavorable properties under irradiation, which can require component replacement and a significant radioactive waste burden. In this assessment, we explore advanced moderators comprised of magnesium oxide (MgO) as the host matrix and beryllium metal and/or beryllium oxide (Be and/or BeO) as the entrained moderating phase. For the reactor performance and thermal-hydraulic safety analysis, the core design model of the General Atomics mHTGR-350 was used to demonstrate the feasibility of a “drop-in” replacement of graphite using the beryllium-based moderators. We employed the neutronics code Serpent to analyze the moderating behavior of the composite moderators with comparisons drawn to graphite. We performed a scoping analysis of accidents for mHTGRs using RELAP to show that these moderators do not present impediments to safety and are expected to stay within temperature limits. Measured thermophysical properties of the composite moderators are used in the thermal-hydraulic assessments. Our analysis reveals that the two-phase composite MgO-matrix beryllium-based moderators are a suitable replacement for graphite.