ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
On North Carolina's ratification of Senate Bill 266
I have been a North Carolinian for 62 years and involved in the state’s nuclear energy industry from my high school days to today. I have seen firsthand how North Carolina has flourished. This growth has been due to the state’s enterprising people and strong leaders. Clean, competitive, and always-on nuclear power has also played an important role.
Veronica Karriem, Edward M. Duchnowski, Bin Cheng, Lance L. Snead, Jason R. Trelewicz, Nicholas R. Brown
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1102-1113
Technical Paper | doi.org/10.1080/00295450.2021.2011573
Articles are hosted by Taylor and Francis Online.
This study evaluates beryllium-based two-phase composite moderators as an alternative to graphite in an evaluation of reactor performance and safety characteristics. Historically, modular high-temperature gas-cooled reactors (mHTGRs) use graphite as a moderator because of its high moderating ratio and reasonable thermal properties; however, graphite has unfavorable properties under irradiation, which can require component replacement and a significant radioactive waste burden. In this assessment, we explore advanced moderators comprised of magnesium oxide (MgO) as the host matrix and beryllium metal and/or beryllium oxide (Be and/or BeO) as the entrained moderating phase. For the reactor performance and thermal-hydraulic safety analysis, the core design model of the General Atomics mHTGR-350 was used to demonstrate the feasibility of a “drop-in” replacement of graphite using the beryllium-based moderators. We employed the neutronics code Serpent to analyze the moderating behavior of the composite moderators with comparisons drawn to graphite. We performed a scoping analysis of accidents for mHTGRs using RELAP to show that these moderators do not present impediments to safety and are expected to stay within temperature limits. Measured thermophysical properties of the composite moderators are used in the thermal-hydraulic assessments. Our analysis reveals that the two-phase composite MgO-matrix beryllium-based moderators are a suitable replacement for graphite.