ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Jeren Browning, Andrew Slaughter, Ross Kunz, Joshua Hansel, Bri Rolston, Katherine Wilsdon, Adam Pluth, Dillon McCardell
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1089-1101
Technical Paper | doi.org/10.1080/00295450.2021.2011574
Articles are hosted by Taylor and Francis Online.
As the nuclear industry moves toward construction of microreactors and next-generation reactors, these efforts pose new challenges. A digital-twin tool will reduce costs and risk through integration of the disparate systems used in the design, construction, and operation of these reactors. Recent investments at Idaho National Laboratory (INL) in open-source digital engineering and multiphysics framework development provide a foundation from which to create and evaluate a digital twin for nuclear reactors. This digital-twin tool will use the Single Primary Heat Pipe Extraction and Removal Emulator (SPHERE) and Microreactor AGile Non-nuclear Experimental Testbed (MAGNET) as case studies to develop a digital twin with both single and 37 heat pipe test articles. The digital twin will provide the capabilities of remote monitoring and unattended operation (autonomous control) of these systems.
A digital twin is a digital replica of an operating asset that can display data received from live sensors, update a physics model for the asset with the received data, compute predictive results of operational status with artificial intelligence (AI) to aid in optimizing asset use, and apply asset control accordingly. This twin will be developed through integration of the open-source technologies Deep Lynx (a data-warehouse technology) and the Multiphysics Object-Oriented Simulation Environment (MOOSE), physical-asset sensors, and physical-asset controls. Specifically, the general AI will successfully predict the events described as MAGNET heat pipe article test cases (such as heat pipe failure) using integrated data from the MAGNET sensors and physics-based models, including developed meta models. The integration of open-source INL software and AI assets with sensor data from a test bed will lead to a repeatable framework and guide for the creation of future digital twins. The team will also perform AI model training and experimentation to determine what models and features are most important to enable intelligent, autonomous control as well as to evaluate and determine best practices for digital-twin cybersecurity.