ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Son H. Kim, Temitope A. Taiwo, Brent W. Dixon
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 775-793
Technical Paper | doi.org/10.1080/00295450.2021.1951554
Articles are hosted by Taylor and Francis Online.
Nuclear power is currently the single largest carbon-free source of electricity in the United States. The climate mitigation cost savings of the existing U.S. nuclear fleet is denominated in hundreds of billions of dollars [net present value (NPV)] based on an integrated assessment modeling of the U.S. energy system within a globally consistent framework. Lifetime extensions of the existing nuclear fleet from 40 years to 60 and 100 years resulted in $330 billion to $500 billion (all figures are in U.S. dollars) (NPV) of mitigation cost savings for the United States under a deep decarbonization scenario consistent with limiting global temperature change to 2°C. The addition of new nuclear deployments in the United States increased the total U.S. mitigation cost savings of the 2°C climate goal by up to $750 billion (NPV). Immediate actions are required in the United States and globally to achieve net-zero carbon emissions by mid-century, and once achieving net-zero emissions, they must remain at net-zero indefinitely. Lifetime extensions of the existing nuclear fleet, in the United States and globally, support urgent near-term emissions reduction goals. Additionally, the longevity of nuclear power technologies reduces the need for new capacity additions of all carbon-free electricity sources and supports long-term actions necessary to maintain net-zero emissions.