ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Shigeki Shiba, Tomohiro Sakai
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 371-383
Technical Note | doi.org/10.1080/00295450.2021.1913032
Articles are hosted by Taylor and Francis Online.
The Purdue Advanced Reactor Core Simulator (PARCS) three-dimensional neutron kinetics code and the TRACE nuclear systems analysis code were interfaced. This provides a best-estimate coupled code system for performing transient plant calculations with reactivity feedback from a detailed core model, significantly contributing to nuclear power plant safety analyses. This study performed steady-state and transient simulations of Peach Bottom 2 Turbine Trip Test 2 (PB2 TT2) using the CASMO5/TRACE/PARCS coupled code. Consequently, CASMO5/TRACE/PARCS simulates the rapid positive reactivity addition caused by the sudden closure of the turbine stop valve. Specifically, the discrepancy in the maximum total power during the transient condition was within 3% compared with the PB2 TT2 experimental data. Furthermore, the sensitivity of the thermal-hydraulic channel (CHAN) component modeling in the coupled CASMO5/TRACE/PARCS code revealed that the number of CHAN components influenced the assembly radial power peaking factor in the PB2 TT2 transient calculation.