ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yuji Fukaya, Shohei Ueta, Tomohiko Yamamoto, Yoshitaka Chikazawa, Xing L. Yan
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 335-346
Technical Paper | doi.org/10.1080/00295450.2021.1901001
Articles are hosted by Taylor and Francis Online.
When total volume control is applied to toxicity in nuclear waste management it becomes a limiting factor for the permittable total operating capacity of nuclear reactors. An alternative conceptual scenario is proposed, aimed at toxicity reduction through partitioning and transmutation. Specifically, the electricity generation capacity could be increased by transmutation of 90Sr and 137Cs. Simultaneously, the cooling time before disposal is reduced to 50 years from the 300 years required by existing scenarios, such as the accelerator-driven system. Finally, the scenario is also found to be feasible in terms of energy balance and cost, using an Li(d,xn) reaction neutron source with a deuteron accelerator for transmutation.