ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
J. Jung, H. Y. Kim, S. M. An
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 268-283
Technical Paper | doi.org/10.1080/00295450.2021.1929769
Articles are hosted by Taylor and Francis Online.
For analysis of an ex-vessel severe accident, the corium melt conditions inside the reactor vessel are important at the time of the reactor vessel failure together with the reactor vessel failure mode. To determine penetration tube failure in the lower head of the reactor vessel during a severe accident, the Korea Atomic Energy Research Institute developed the PENetration Tube Analysis Program 2.0 (PENTAP 2.0) and carried out validation work based on experimental data that can simulate penetration tube heatup, rupture, penetration weld failure, and penetration tube ejection failure. A numerical simulation was undertaken to investigate the effect of the presence of melt in a tube, the expansion direction of the reactor vessel hole, and wall ablation on tube failure using PENTAP 2.0. The simulation results showed that the presence of melt inside the tube helps prevent tube ejection. When melt is not in the penetration tube, tube ejection is strongly dependent on the expansion direction of the reactor vessel hole.