ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
J. Jung, H. Y. Kim, S. M. An
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 268-283
Technical Paper | doi.org/10.1080/00295450.2021.1929769
Articles are hosted by Taylor and Francis Online.
For analysis of an ex-vessel severe accident, the corium melt conditions inside the reactor vessel are important at the time of the reactor vessel failure together with the reactor vessel failure mode. To determine penetration tube failure in the lower head of the reactor vessel during a severe accident, the Korea Atomic Energy Research Institute developed the PENetration Tube Analysis Program 2.0 (PENTAP 2.0) and carried out validation work based on experimental data that can simulate penetration tube heatup, rupture, penetration weld failure, and penetration tube ejection failure. A numerical simulation was undertaken to investigate the effect of the presence of melt in a tube, the expansion direction of the reactor vessel hole, and wall ablation on tube failure using PENTAP 2.0. The simulation results showed that the presence of melt inside the tube helps prevent tube ejection. When melt is not in the penetration tube, tube ejection is strongly dependent on the expansion direction of the reactor vessel hole.