ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
J. Jung, H. Y. Kim, S. M. An
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 268-283
Technical Paper | doi.org/10.1080/00295450.2021.1929769
Articles are hosted by Taylor and Francis Online.
For analysis of an ex-vessel severe accident, the corium melt conditions inside the reactor vessel are important at the time of the reactor vessel failure together with the reactor vessel failure mode. To determine penetration tube failure in the lower head of the reactor vessel during a severe accident, the Korea Atomic Energy Research Institute developed the PENetration Tube Analysis Program 2.0 (PENTAP 2.0) and carried out validation work based on experimental data that can simulate penetration tube heatup, rupture, penetration weld failure, and penetration tube ejection failure. A numerical simulation was undertaken to investigate the effect of the presence of melt in a tube, the expansion direction of the reactor vessel hole, and wall ablation on tube failure using PENTAP 2.0. The simulation results showed that the presence of melt inside the tube helps prevent tube ejection. When melt is not in the penetration tube, tube ejection is strongly dependent on the expansion direction of the reactor vessel hole.