ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Jesson Hutchinson, Jennifer Alwin, Alexander McSpaden, William Myers, Michael Rising, Rene Sanchez
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S62-S80
Technical Paper | doi.org/10.1080/00295450.2021.1908076
Articles are hosted by Taylor and Francis Online.
Criticality experiments with 235U (metal and hydride) and 239Pu (metal) were performed during the Manhattan Project. Results from these experiments provided necessary information for the success of the Manhattan Project [LA-1033 to LA-1036 (1947), LA-02532-MS V I (1961), and Critical Assembly: A Technical History of Los Alamos During the Oppenheimer Years, 1943–1945 (1993)]. These experiments have been previously described in compilations made after the Manhattan Project, but those works are either lacking in technical details or are not publicly available. This work aims to provide detailed information while showcasing the enduring impact of these experiments 75 years after they were performed. Furthermore, we use modern computational methods embodied in the MCNP6® code and ENDF data to analyze and interpret these historic measurements. The world’s first four criticality accidents are also discussed, as lessons learned from these helped shape the field of criticality experiments.