ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Mauricio E. Tano, Jean C. Ragusa
Nuclear Technology | Volume 207 | Number 10 | October 2021 | Pages 1599-1614
Technical Paper | doi.org/10.1080/00295450.2020.1820830
Articles are hosted by Taylor and Francis Online.
In the high-temperature reactor design, it is common practice to leave gaps between the graphite blocks of the reflectors to accommodate thermal dilatation and material swelling, as well as to provide an additional cooling source during operation. These gaps give rise to bypass flows entering the reactor core. The bypass flows can change friction factors and heat exchange coefficients obtained in the bulk of the pebble bed. In this paper, a coupled computational fluid dynamics–discrete element method (CFD-DEM) model is proposed. In this model, the pebbles are resolved by the CFD grid and the turbulent field is partially captured using a detached eddy simulation method. The DEM model is first validated against empirical correlations for the packing of the pebbles, and the coupled model is then tested against thermal measurements in the SANA experiment. Then the model is used to perform three-dimensional studies of the effects of the bypass flows in a representative pebble bed configuration. It is determined that the effect of cross flows can be approximately bounded to the first two layers of pebbles next to the reflector wall. Additionally, an increase of ~12% in the Nusselt number in the pebbles next to the reflector is predicted, with a maximum local increase in the pebble of ~100%.