ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Sonja D. Schmid
Nuclear Technology | Volume 207 | Number 9 | September 2021 | Pages 1312-1328
Technical Paper | doi.org/10.1080/00295450.2020.1837584
Articles are hosted by Taylor and Francis Online.
A recent American “mini-series” on Chernobyl, widely watched across the world, presented viewers with the concluding finding that this massive accident had occurred because the reactor design had inherent flaws; flaws that were known but not previously fixed because it was “cheaper” that way. The reactor design in question is the RBMK, and this paper will argue that this design was far from “cheap,” neither then nor now, and that its adoption as the second standard design for the Soviet Union’s nuclear power reactor fleet was based on much more than economic considerations. With the benefit of hindsight, it is easy to forget that reactor designs are always chosen for a multitude of reasons and never solely based on their technical or economic merits. Based on archival research, interviews, and industry publications, I show that approving and building RBMK reactors made good sense at the time, despite later claims to the contrary. Then I take the examples of a small modular reactor (SMR), the proposed NuScale Power Module, and a fast neutron reactor, TerraPower’s proposed Traveling Wave Reactor, to argue that we witness comparable negotiations today, as new designs for reactors (1) attempt to fit into existing safety and regulatory frameworks, (2) navigate security and nonproliferation concerns, and (3) embody visions of a specific sociotechnical order. I conclude that technical designs never occur in a socioeconomic, political, or cultural vacuum; instead, they are developed by people steeped in social norms, regulatory concerns, and economic expectations of a specific time and place. In the spirit of making this point relevant to practitioners, I will suggest ways of making these implicit frameworks visible, to actively and consciously start tweaking them, while staying aware of the implications that technical choices may have on our social expectations and vice versa.