ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Sonja D. Schmid
Nuclear Technology | Volume 207 | Number 9 | September 2021 | Pages 1312-1328
Technical Paper | doi.org/10.1080/00295450.2020.1837584
Articles are hosted by Taylor and Francis Online.
A recent American “mini-series” on Chernobyl, widely watched across the world, presented viewers with the concluding finding that this massive accident had occurred because the reactor design had inherent flaws; flaws that were known but not previously fixed because it was “cheaper” that way. The reactor design in question is the RBMK, and this paper will argue that this design was far from “cheap,” neither then nor now, and that its adoption as the second standard design for the Soviet Union’s nuclear power reactor fleet was based on much more than economic considerations. With the benefit of hindsight, it is easy to forget that reactor designs are always chosen for a multitude of reasons and never solely based on their technical or economic merits. Based on archival research, interviews, and industry publications, I show that approving and building RBMK reactors made good sense at the time, despite later claims to the contrary. Then I take the examples of a small modular reactor (SMR), the proposed NuScale Power Module, and a fast neutron reactor, TerraPower’s proposed Traveling Wave Reactor, to argue that we witness comparable negotiations today, as new designs for reactors (1) attempt to fit into existing safety and regulatory frameworks, (2) navigate security and nonproliferation concerns, and (3) embody visions of a specific sociotechnical order. I conclude that technical designs never occur in a socioeconomic, political, or cultural vacuum; instead, they are developed by people steeped in social norms, regulatory concerns, and economic expectations of a specific time and place. In the spirit of making this point relevant to practitioners, I will suggest ways of making these implicit frameworks visible, to actively and consciously start tweaking them, while staying aware of the implications that technical choices may have on our social expectations and vice versa.