ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Stéphanie Tillement, Frédéric Garcias
Nuclear Technology | Volume 207 | Number 9 | September 2021 | Pages 1291-1311
Technical Paper | doi.org/10.1080/00295450.2020.1868892
Articles are hosted by Taylor and Francis Online.
Very few papers exist in the field of social sciences that follow and study nuclear infrastructure design projects from the inside. Such a perspective would make it possible to understand the mechanisms of their successes or difficulties at their very origin. At a time when high hopes are placed on civil nuclear energy to solve the climate issue, but when simultaneously, nuclear industry actors are facing major difficulties in a great number of flagship projects, this situated understanding of any given project’s trajectory becomes crucially important. This paper proposes an analysis, from the inside, of a project that, about ten years ago, raised great expectations from both the French and global nuclear industry, but which, in 2019, was finally halted. This project is that of a so-called fourth generation sodium reactor: the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID). ASTRID was a new sodium-cooled fast reactor. Begun in 2010, the project’s development was suspended at the end of 2019 by the French authorities. Through an inductive study of the project in the making, conducted from 2015 to 2019, the research team was able to follow the project trajectory and carry out nearly 30 interviews with actors directly involved in the project itself. By studying ASTRID as an infrastructure development project and building on the concepts of scale and infrastructure from the literature, the ASTRID project’s halt can be understood. The project’s suspension was the result of the increasing complexity and ambiguity faced by project members and stakeholders in aligning the local and global scales as the new infrastructure was developed, and more precisely, the ASTRID project infrastructure and the global nuclear infrastructure. Our analyses show that ASTRID’s trajectory gradually drifted as a result of three misalignments between the project’s infrastructure and the global nuclear infrastructure: a temporal, social, and physical misalignment. As a result, the project identity can be described as having been vague and ambiguous. This paper sets out how such a lack of clarity impacted design practices, the project organization as a whole, and the ASTRID trajectory. In consequence, it is crucially important that lessons are learned from the project’s cessation to understand both the difficulties related to the nuclear renaissance and in terms of the field of project management in general.