ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Alicia M. Raftery, Rachel L. Seibert, Daniel R. Brown, Michael P. Trammell, Andrew T. Nelson, Kurt A. Terrani
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 815-824
Technical Paper | doi.org/10.1080/00295450.2020.1823187
Articles are hosted by Taylor and Francis Online.
Ceramic-metallic nuclear fuels are a candidate fuel for nuclear thermal propulsion systems due to their high heat transport properties, which are necessary in very high-temperature environments. The conventional fabrication of uranium nitride–molybdenum fuel has been thoroughly studied in the past, but modern manufacturing techniques have presented a unique opportunity for further development within this field. This work demonstrates the use of advanced manufacturing techniques to produce nuclear fuel pellets composed of uranium nitride microspheres encased in a molybdenum matrix. Binder jetting is used to print molybdenum disks that are filled with uranium nitride microspheres and afterward sintered using spark plasma sintering. Two fuel pellets were fabricated to demonstrate the methodology and to provide a baseline analysis of the effects of temperature and pressure processing conditions. Characterization of the sintered fuel pellets includes detailed microstructural analysis and thermal conductivity measurements.