ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B. A. Gusev, I. S. Orlenkov, L. N. Moskvin, N. G. Sandler, A. A. Efimov, А. M. Aleshin, V. V. Krivobokov, V. N. Vavilkin
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 791-803
Technical Note | doi.org/10.1080/00295450.2019.1693216
Articles are hosted by Taylor and Francis Online.
The technologies and chemical solutions for decontamination of high-power reactors are limited for use in small-scale power generation due to fundamental differences in operating conditions, fuel composition, fuel-element cladding structure, coolant water chemistry, and structural materials. The small space of the primary circuit and specific design and operational features have made it necessary to optimize the decontamination technologies for different stages of the naval rector plant (NRP) life cycle. Based on many years’ experience in maintenance, repair, and operation of NRPs, the principles for optimization of the process approaches are defined to reduce radioactive contamination of NRP equipment. In each particular case the decontamination technology is selected with due consideration for the NRP’s design, actual radioactive contamination, and the requirements for the cleanliness of the primary system after decontamination. This makes it possible to optimize the number of treatment cycles/stages and reagent consumption and to minimize the probability of recurrent deposit formation and the liquid radwaste amount.