ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Jung-Woo Kim, Dong-Keun Cho, Nak-Youl Ko, Jongtae Jeong, Min-Hoon Baik
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 1-16
Technical Paper | doi.org/10.1080/00295450.2018.1426331
Articles are hosted by Taylor and Francis Online.
New methodology for a risk-based safety assessment of a geological disposal system of nuclear waste was implemented using the numerical Korea Atomic Energy Research Institute (KAERI) Performance Assessment Model (K-PAM). K-PAM was applied to a conceptual geological disposal system for pyroprocessed radioactive wastes based on the KAERI Underground Research Tunnel (KURT) site. The methodology was systematically organized for model development considering two types of external events: earthquakes and well intrusion. Following description of its conceptual models and submodules, K-PAM was partially verified by comparing the consequences of two major modules of K-PAM—engineered barrier system and natural barrier system—with those by a well-known, comparable process model using COMSOL. In addition, K-PAM was demonstrated using three scenarios: (1) the reference scenario, in which the normal consequences of the disposal system without external events could be predicted; (2) the deterministic complex scenario, in which the impacts of individual external events on the disposal system could be estimated separately; and (3) the probabilistic complex scenario, in which the efficiency of the new methodology for a risk-based safety assessment could be confirmed numerically by showing the probable maximum dose rate according to any single scenario, the convergence of risk, the dominant impacts contributing to the maximum dose rate, and the probability of occurrence of the scenario groups.