ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Jaeha Kim, Mohammad Abdul Motalab, Yonghee Kim, Gwangsoo Kim
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 138-154
Technical Paper | doi.org/10.1080/00295450.2017.1415087
Articles are hosted by Taylor and Francis Online.
The power coefficient of reactivity (PCR) needs to be negative to achieve the inherent safety of a reactor. However, the possibility that the PCR of CANada Deuterium Uranium (CANDU) reactors can be positive has been raised in recent studies. In such circumstances, there was an experimental approach on evaluating the PCR of CANDU in 2012 at an in-operation CANDU reactor, Wolsong Unit 2. In the evaluation, the PCR was indirectly measured by a method that required estimating the reactivity variation due to Xe, liquid zone controllers (LZCs), and fuel depletion based on the measurement data. In this study, the PCR of a CANDU was reevaluated by the same methodology with more proper and detailed methods to estimate all the factors in addition to some minor reactivity corrections. The estimation of Xe and LZC reactivity was performed by an in-house three-dimensional code and Serpent2 in addition to RFSP-IST. Furthermore, several short studies regarding the factors that result in uncertainty of the Xe/LZC reactivity estimation were done in detail. First, a method to determine 14 LZC levels at a certain time based on the measurement data was appropriately selected through determining the features of the measurement data. The influence of the power transient scheme and the impact of local refueling transients due to daily refueling of CANDU reactors on xenon reactivity estimation were also analyzed briefly. Finally, the PCR of the CANDU in operational conditions was evaluated to be ~0.5 pcm/%P on average at a measurement time of 5 to 20 min after the power perturbation.