ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Samaneh Rakhshan Pouri, Supathorn Phongikaroon
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 308-319
Technical Paper | doi.org/10.1080/00295450.2016.1273730
Articles are hosted by Taylor and Francis Online.
Cyclic voltammetry is one of the most common electroanalytical methods for determining the thermodynamic and electrochemical behavior of a species in the eutectic molten salt. The diffusion coefficient, apparent standard potential, transfer coefficient, equilibrium potential, and other parameters can be determined through this method. This study focused on a development of an interactive reverseengineering method by analyzing available uranium chloride data sets (1 to 10 wt%) in a LiCl-KCl molten salt at 773 K under different scan rates to help improve and provide robustness in detection analysis. A principle method and a computational code have been developed by using electrochemical fundamentals and coupling various variables, such as the diffusion coefficients, formal potentials, and process time duration. In addition, a graphical user interface (GUI) through the commercial software Matlab was created to provide a controllable environment for different users. Results provide plots of current, potential, and concentration of each species as a function of time under various determined conditions. The GUI also displays the reversible and irreversible peaks, in a very short run time (around 2 min), with an adequately selected time interval of approximately 0.08 s and an ability to calculate the concentration of each species (e.g., U4+ and U3+) at any specified conditions.