ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Raj Kamal Kaur, Lalit Kumar Singh, Babita Pandey
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 296-307
Technical Paper | doi.org/10.1080/00295450.2016.1273702
Articles are hosted by Taylor and Francis Online.
Digital computers have been chosen in the implementation of safety critical systems in newly constructed nuclear facilities. These safety critical systems are designed to operate in a secure manner so that their failure should not prompt any serious damage or catastrophic effects. Due to the security significance of critical systems, there is a need to ensure the secrecy of systems at an early stage. Existing work focused on evaluating security by considering at the requirement phase only integrity, confidentiality, access control, and availability attributes. However, many essential critical attributes have not been taken into consideration, like deadlock, liveness, etc. To improve the security of software systems, this paper introduces a threat-driven modeling framework. It predicts security threats, it figures out which threats require mitigation and how to alleviate these threats, and it incorporates the essential missing attributes. We specify the functionality of the system with a Petri net, and we analyze the behavioral and structural properties of the system and threat mitigation. Aspect-oriented stochastic Petri nets are used as a formal amplified model. The technique has been validated on 11 safety critical systems of a nuclear power plant and it is shown for one case study in this paper.