ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
C. Ramesh, N. Murugesan, V. Ganesan, N. Sivai Bharasi, M. G. Pujar, U. Kamachi Mudali
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 99-109
Technical Paper | doi.org/10.13182/NT15-141
Articles are hosted by Taylor and Francis Online.
The Prototype Fast Breeder Reactor (PFBR) is nearing completion at Kalpakkam, India. Sodium is the heat transfer medium for PFBR, and austenitic steel SS 316LN is the material of construction for the sodium circuits of the reactor. During reactor service, the inner surfaces of the sodium circuit pipelines undergo corrosion by interacting with liquid sodium, forming ferritic layers. Radioactive nuclides formed by the activation of corrosion products are deposited on the ferritic surface, resulting in a radioactive burden on maintenance personnel. Chemical decontamination is generally carried out by dissolving the surface ferritic layer on the inside surface of the sodium circuit. In this context, a study of the dissolution behavior of the ferritic layer on SS 316LN samples formed by exposure to liquid sodium at 823 K was carried out by monitoring the H2 released during the chemical interaction with decontamination formulation. The decontamination chemical formulation was a mixture of sulfuric acid and phosphoric acid. This paper discusses the sample preparation, formation of the ferritic layer, and studies carried out on its dissolution behavior in decontamination formulation by monitoring the hydrogen released during the reaction using a proton exchange membrane–based hydrogen sensor.