ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Marko Maucec
Nuclear Technology | Volume 132 | Number 2 | November 2000 | Pages 179-195
Technical Paper | Fission Reactors | doi.org/10.13182/NT00-A3137
Articles are hosted by Taylor and Francis Online.
The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further, a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as "pressed-only" low-density Al2O3 and AlF3, are considered. The proposed version of the BNCT facility, with PbF2 as the epithermal neutron filter/moderator, provides an epithermal neutron flux of ~1.1 × 109 n/cm2s, thus enabling patient irradiation times of <60 min. With reasonably low fast neutron and photon contamination ([overdot]Dnfast/epi < 5 × 10-13 Gycm2/n and [overdot]D /epi < 3 × 10-13 Gycm2/n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs.